
STRUCTURAL TRANSFORMATION MECHANISMS

A OB

FIG. 3. If cations are shifted in the way described by arrows, the trirutile structure is formed from the Li_2ZrF_6 structure type.

structure type. Amongst the ternary compounds of general formula AB_2X_6 a similar arrangement of (ordered) cations occurs in columbite FeNb₂O₆. By analogy with the rutile $\neq \alpha$ -PbO₂ transformation,

we might therefore expect the AB_2X_6 compounds discussed above to transform at high enough pressures to a ternary analog of α -PbO₂, possibly with the cations ordered as in FeNb₂O₆.

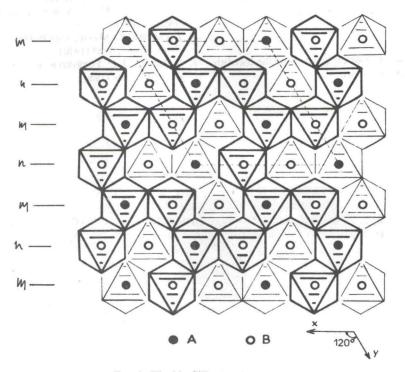
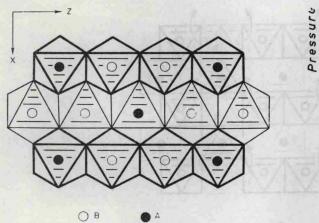



FIG. 4. The Na₂SiF₆ structure type.

527

GALY AND ANDERSSON

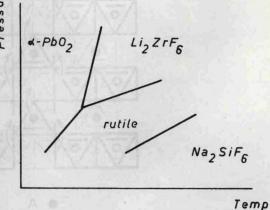
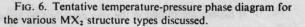


FIG. 5. The trirutile structure type.


It would be interesting to study the effects of applied pressure in the high temperature experiments referred to above.

In the meantime a tentative pressure-temperature phase diagram is given in Fig. 6. Its construction is based on the observations that

- (a) α -LiSnF₆ transforms to β -Li₂SnF₆,
 - (b) α -Li₂GeF₆ transforms to β -LiGeF₆ at high temperatures and
 - (c) rutile transforms to a structure of the α -PbO₂ type at high pressure.

Acknowledgment

One of us (S.A.) has a research grant from the Swedish Natural Science Research Council.

References

- S. ANDERSSON AND J. GALY, Bull. Soc. Chim. France, 1065 (1969).
- 2. J. GALY, S. ANDERSSON, AND J. PORTIER, Acta Chem. Scand. 23, 2949 (1969).
- 3. E. HOPPE AND W. DÄHNE, Naturwiss. 47, 397 (1960).
- 4. C. HEBECKER AND R. HOPPE, Naturwiss. 53, 106 (1966).
- 5. J. PORTIER, F. MÉNIL, AND J. GRANNEC, C.R. Acad. Sci. 269, 327 (1969).
- 6. J. PORTIER, F. MENIL, AND P. HAGENMULLER, Bull. Soc. Chim. France, 3485 (1970).
- 7. A. ZALKIN, J. D. FORRESTER, AND D. H. TEMPLETON, Acta Cryst. 17, 1408 (1954).

528